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Abstract

The effectiveness of the various Radar Cross Section

(RCS) prediction techniques was investigated. The RCS of

square flat plates was analyzed using the Physical Optics

approximation, the Physical Theory of Diffraction, the

Geometrical Theory of Diffraction, the Uniform Theory of

Diffraction, and the Moment Method or Method of Moments. The

RCS predicted by the computational methods was compared to

measurements performed in an anechoic RCS measurement

chamber. Also, the five computational methods were compared

0in terms of plate size (in wavelengths), computer (CPU) time

for each computation, and angular regions of computational

integrity.

It was found that although the Moment Method is the most

accurate RCS prediction method, it takes too much CPU time

for large plates (over 2.5 wavelengths). The Uniform Theory

of Diffraction, on the other hand, is accurate for large

plates and takes less CPU time than the Moment Method. The

Geometric Theory of Diffraction is also accurate but fails

near the edge of the plate. Finally, the Physical Theory of

Diffraction and the Physical Optics approximation are

relatively inaccurate,

xi



A COMPARISON OF COMPUTATIONAL ELECTROMAGNETIC METHODS

FOR. THE PREDICTION OF RADAR CROSS SECTION

I. Introduction

Background

Since World War II, the prediction of radar cross section

(RCS) for different targets has been a priority (Knott,

1985:252), although, the history of RCS goes back even

further than WW II. The development of RCS has its roots in

the investigations on the nature of light. Thus, the

development of RCS goes back to the works of Pythagoras,

Aristotle, Ptolemy, and others (Kouycumjian, 1985:1). These

men investigated the nature of light and its propagation.

Geometrical Optics was developed in the early seventeenth

Ccentury (Young, 1976:84) and modeled the propagation of light

in terms of rays. According to the theory of Geometrical

Optics, light travels in straight lines in a homogeneous

medium (Young, 1976:84). In 1801, Thomas Young was the first

person to try to explain the nature of diffraction by the use

of rays (Kouyoumjian, 1985:2). He demonstrated that light

consists of waves whose wavelengths are small (Young,

1976:84). In 1862, Maxwell predicted the existence of

electromagnetic waves and stated that light is an

electromagnetic wave (Kouyoumjian, 1985:7; Young,

1976:84-85).

In 1880, Kirchhoff postulated what is now known as the

Physical Optics approximation. The Physical Optics
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approximation predicts the scattering of electromagnetic

waves from a perfect conductor (more on that later). In

1887, Hertz conducted experiments concerning on the

reflection of radio waves from metallic and dielectric

objects (Blacksmith, 1985:902; Skolnik, 1980:8). Heztz

demonstrated that radio waves and light waves operate on a

similar principle (Skolnik, 1980:8). Also, Hertz verified

Maxwell's equations experimentally (Kouyoumjian, 1985:7).

In 1894, Sommerfeld calculated the diffraction of a

conducting infinite half-plane (Kouyoumjian, 1965:867) (see

Fig 1.1).

zY

-oo€ X * -oO

Fig 1.1. Infinite Half-Plane

Incitent
rag

Dif fractin

f 

wedge

Fig 1.2. Perfectly Conducting Wedge

In 1912, McDonald produced an asymptotic solution for the

1-2



diffraction from a perfectly conducting infinite wedge

, (Kouyoumjian, 1965:867) (see Fig 1.2). In 1953, Keller

developed the Geometrical Theory of Diffraction (Kouyoumjian,

1985:12). He introduced the concept of diffracted rays which

are added to the rays obtained from the Geometrical Optics

model to obtain the total scattering from an object

(Kouyoumjian, 1985:12). Also in the fifties, Braunbek (in

the U.S.) and Ufimstev (in the U.S.S.R.) developed the

Physical Theory of Diffraction (Kouyoumjian, 1985:12). This

method was similar to the Geometrical Theory of Diffraction,

but, it sought to improve the Physical Optics result instead

of the Geometrical Optics result (Kouyoumjian, 1985:12). As

will be discussed later, the Geometrical Theory of

Diffraction failed at the shadow and reflection boundary,

* where it predicted an infinite result (Kouyoumjian, 1985:7).

To overcome this problem and others which the Geometrical

Theory of Diffraction presented, the Uniform Theory of

Diffraction (due to Kouyoumjian and Pathak) and the Uniform

Asymptotic Theory (due to Lee and Deschamps) were developed

(Knott and others, 1985:134). In the late sixties, the

Moment Method, which is a numerical solution to an exact

equation, was implemented thanks to the availability of

high-speed computers (Stutzman, 1981:307). Other

computational methods have been developed after these such as

the Equivalent Current Method, and others (Knott and others,

1985:136).

Each computational method differs in its approach to a

1-3
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particular problem. Also, each method has some advantages

and disadvantages when compared to the others (Skinner,

1985:2-3). The purpose of this investigation is to explore

to what extent each method is reasonable to use in terms of

RCS pattern prediction and CPU time. Each method will be

compared in terms of frequency of operation, angle of

incidence of the target to the radar, polarization of the

incident wave, and computer (CPU) time.

Problem

The problem is to decide how effective and time consuming

are the computational methods used when analyzing the total

scattering behavior from square flat plates.

Basic Theory

RCS describes the "electromagnetic size" of an object

detected by a radar system. The radar emits electromagnetic

(EM) waves.

Direction
Source of

-/ Propagation

Fig 1.3. Electromagnetic Wave

These waves are composed of an electric (E) field and a

magnetic (5) field. These fields are perpendicular to each
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other and to the direction of propagation (see rig 1.3). The

0direction of the E-field determines the polarization of the

electromagnetic wave (Knott and others, 1985:70-71). (See

Fig 1.4).

H E

Horizojntal ijerticai
£ Hj

Fig 1.4. E-field Polarizations

The RCS is a function of the target's shape, the frequency or

wavelength of operation, the polarization of the transmitter

and receiver, the angle of incidence of the incident wave

with respect to the target, and the materials composing the

target (Knott and others, 1985:48).

When making RCS measurements, it is very useful to

classify the target's dimensions in terms of the operating

wavelength of the radar (Johnson, 1982:2). The wavelength is

obtained by dividing the speed of light (3.0X108 m/s) by the

radar's frequency of operation.

Scope

In this thesis, the computational. methods will be

compared In terms of their accuracy using different angles

between the incident EM wave and the target, the size of the

target compared to the wavelength of operation, and the CPU

time they require.

The investigation covers five computational methods. The

1-5



methods applied are the Physical Optics approximation, the

Geometrical Theory of Diffraction, the Uniform Theory of

Diffraction, the Physical Theory of Diffraction, and the

Method of Moments.

Square flat plates were used as the targets in this

investigation. The size of the plates varies from half a

wavelength (on one side) to six and a half wavelengths in 0.5

wavelength increments. Also, 0.75 wavelength plate was used.

The plates were measured in the Avionics Laboratory Far-Field

RCS Measurement Facility. The measurements were compared

against the results obtained by the computational methods.

These comparisons provide a good standard on how accurate

each method is as the electrical length of the plates change.

Also, it is possible to predict where each method fails to

0produce good results as the aspect angle changes. Finally,

each method was compared in terms of CPU time. These

guidelines will be useful in the case where the RCS of a more

complex target is desired .

Summary of Current Knowledge

The Physical Optics Approach (PO) is often a preferred

method because it is easy to use for any geometry (Skinner,

1985:6). This method assumes that electrical currents are

induced by the EM waves on the area that is "seen" by the

radar (illuminated region). It also assumes that no currents

exist in the shadow region (the region that EM waves do not

illuminate directly). (See Fig 1.5).
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inlcident Em reams
l~cIenl Be~l$, Target

E:llumlnatea shaaow
Reaion Region

Fig 1.5. EM wave illumination

Some of PO's advantages are: it is easy to use, the user does

not need an extensive background in electromagnetics, and the

PO computer codes require a small amount of CPU time

(Skinner, 1985:6). Unfortunately, PO also has some

disadvantages. Some of these disadvantages are: the target

can only be a good electrical conductor, the target's area

must be much greater than the wavelength, and higher order

scattering effects are neglected (Knott and others, 1985:59).

Higher order scattering effects are effects that are due to

the particular shape or surface characteristics of the

target. Some examples are effe:tl that occur at sharp spots

such as edges, tips, corners, and curved surfaces. The EM

waves from the radar hit these sharp discontinuities and are

re-radiated in all directions. Thus, the radar sees a

different RCS than the PO method would predict on some

targets (Stutzman, 1981:458).

The Geometrical Theory of Diffraction (GTD) is a ray

tracing method developed by Keller (Keller, 1962). Ray

1-7



tracing methods assume that electromagnetic waves propagate

in "line-of-sight" directions. Ray tracing methods are more

dependent on exact geometrical description than PO and

provide a better insight of what is happening as the EM waves

bounce off the target (Skinner, 1985:2). GTD provides fast

computations. Its results are good for almost all large

targets. It takes into account higher order effects such as

tip, corner, and edge scattering. Also, GTD takes into

account the RCS contribution of the shadow region.

Unfortunately, GTD predicts an infinite result on the shadow

and the reflection boundaries (Knott and others, 1985:133).

The Uniform Theory of Diffraction (UTD) is an extension

of GTD. The first version of UTD was developed by

Kouyoumjian and Pathak of Ohio State University (Knott and

others, 1985:134). UTD solves the problems that GTD has at

shadow boundaries. It prevents the RCS from approaching

infinity at the shadow boundary. Except for this, UTD is

practically identical to GTD. The CPU time it requires is

almost the same as that required by GTD. However, the UTD

calculations are more complex (Skinner, 1985:10).

The Physical Theory of Diffraction (PTD) was developed by

Ufimstev of the U.S.S.R. and Braunbek of the U.S. almost at

the same time (Skinner, 1985:12). PTD is an extension of PO

which adds "a correction factor without any physical

significance" (Skinner, 1985:12). This correction factor

increases the accuracy of PO. Otherwise, the advantages and

disadvantages of PTD are the same as those for PO (Skinner,

1-8



1985:12).

4The Moment Method (MM) is also known as the Method of

Moments. It is a technique that is very accurate in

producing results for targets whose dimensions in wavelengths

are very small (Stutzman, 1981:370). MM presents the

solution to an integral equation which models a particular

target "exactly" (Stutzman, 1981:306-307). The limits of the

integral equation depend on the particular target used. MM

has some advantages which make it very useful in some

applications. Among these advantages are: it can produce an

almost exact solution, it can be used to find all the

electromagnetic properties of the target, and it can

accurately predict all the scattering properties of the

target (Skinner, 1985:16). One of its disadvantages is that

it takes too much CPU time to calculate the RCS if the

target's size is greater than 2 to 3 wavelengths (Skinner,

1985:16). Another disadvantage is it does not give much

insight on the scattering mechanisms of the target (Skinner,

1985:17).

Approach

1. Computations were performed to predict the RCS of

different sizes of square flat plates using PO, GTD, UTD,

PTD, and MM. The size of the plates ranged from .5

wavelengths to 6.5 wavelengths in .5 wavelength increments.

First, the computations were performed using a vertically

polarized incident wave vs the angle of incidence of the

1-9



transmitter. Then, a horizontally polarized wave was used.

2. Measurements were performed on the square flat plates

given by the Avionics Laboratory. Again, the sizes of the

plates ranged from .5 wavelengths per side to 6.5 wavelengths

in .5 wavelength increments.

3. Comparisons were made between the results of the

computations and measurements for each square flat plate.

4. General conclusions were obtained from the comparisons

mentioned above. These conclusions will be helpful in

deciding which of these RCS computational methods is more

useful for a target consisting of perfectly conducting flat

elements.

Materials and Equiepment

A VAX 11/780 mainframe computer is available for the

implementation of the computational methods. The targets

were provided by the sponsor. The Avionics Laboratory

Measurement Facility was used for the measurements of the

targets.

The RCSBSC computer code developed at Ohio State

University by Marhefka (Marhefka, 1981) was used to calculate

the RCS of different targets using PO, PTD, and UTD. The ESP

computer code (Newman, 1985) was used to calculate the RCS of

the targets using MM. Both computer codes were available in

the VAX computer.

The GTD calculations were obtained from a program that

was developed for this thesis from formulations developed byW

1-10



Ross (Ross, 1966).

In Chapter II, the theory used for the computational

methods is discussed in more detail. In Chapter III, the

measurement procedure is explained. In Chapter IV, the

measurements are compared to the RCS computational methods.

Finally, Chapter V offers conclusions and recommendations.

1-11



NO"Il. Theory

General Theory

Sets of small polygonal flat plates can be used to model

almost any target. This is one reason why flat plates were

used in this investigation as targets. Also, flat plates are

cheap and easy to construct. In this chapter, square flat

plates will be discussed in general. Also, each

computational method will be used to see how it calculates

the RCS from the flat plates.

Note, A is a general complex scalar, B is a general real

vector, and C is a general complex vector.

RCS is defined by

= 9'r I;rn R~ ES~
I4ja (2.1)

where Es and Ei are the scattered and incident electric

fields respectively (Knott and others, 1985:48) and R is the

distance between the target and the radar. Since R

approaches infinity arid Es decays as I/R, the RCS does not

depend on the distance of the target from the radar, as long

as the distance is large (Knott, 1985:252). Typically, the

RCS measurements are made using this approximation (far-field

approximation), although it is possible to measure the RCS

when the target is in the near field. From Eq (2.1), it can

be shown that RCS has dimensions of area. Usually these

2-1



I
dimensions are given in square meters. Furthermore, the

units of RCS are converted to decibels relative to a square

meter (dBsm) to provide a standard for comparison purposes.

The targets used in the investigation are square flat

plates. Flat plates exhibit three different scattering

behaviors (Knott and others, 1985:6-7). The first one is

specular or broadside scattering. In this case, the plate's

broadside is parallel to the radar antenna's aperture. This

RCS is "proportional to the square of the area of the plate

and the square of the frequency" (Knott and others, 1985:6).

The second type of scattering possible for a flat plate

is when the plate is oriented out of the specular angle, and

having two edges perpendicular to the "line-of-sight" with

the receiver. Now the RCS is proportional to the square of

the length of the edge (Knott and others, 1985:6). This RCS

is independent of frequency, which is similar to the case of

a large sphere or a spheroid (Knott and others, 1985:6-7).

The third type of scattering occurs when the flat plate

is oriented such that the receiver only "sees" the RCS from

the four corners (Knott and others, 1985:7). This occurs at

all other angular positions. These returns are inversely

proportional to square of the frequency of operation (Knott

and others, 1985:7).

Each computational method used in the investigation is

good for approximating the specular scattering from the

plates, as long as the plates are large. Only the Moment

Method is good for calculating the specular behavior of
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plates which are small when compared to wavelength. This is

because the other computational methods are good only when

the target's size is greater than the operating wavelength.

The purpose of the investigation is to see how effective and

time consuming each of the computational methods is when

analyzing the total scattering behavior from square flat

plates.

The coordinate system which was used to define the target

is as shown on Fig 2.1.

Z

Target

a
Y

~x

Fig 2.1. Coordinate system u..ed

In the following sections each of the computational

methods used in the investigation will be discussed in

reference to the square flat plate.

Physical Optics (PO)

The basic premise assumed by PO is that the incident

field on the target will produce a current given by

- P xr x- H in illuminated region
o1 (2.2)

- in shadow region
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where f is the unit vector perpendicular to the target's

surface (see Fig 2.2).

Surce / /

MEW

sa

Fig 2.2. PO current on a target

Assuming a monostatic case (the radar transmitter and

receiver are co-located), the RCS will always be measured in

the illuminated region. The vector potential is used to

obtain an expression for the field scattered by the target

(Stutzman, 1981:455). The vector potential is given by

S eX(-jkR) 
(2.3)

where R is the distance between the incremental surface patch

and the radar, and k is the wave number. Assuming that the

target is far away (far-field), the scattered field is given

by

2-4



S -jwAA (2.4)

where a is the permeability constant (in free space P-4w x
1-7.

10- ).

Using the definition of RCS (Eq (2.1)) and evaluating A

for a rectangular flat plate the following expression is

obtained:

0-00 C ' 0Si09 KCL r~ (2.5)
PQ~ ~ (2 0k Si ne )

where A is the wavelength, k-2,/x, is the aspect angle, and

b-a for'a square flat plate (Ross, 1966:330). This equation

is independent of polarization, because the result is the

same in either polarization (Ross, 1966:330).

Geometrical Theory of Diffraction (GTD)

The GTD approach has its roots in the Geometrical Optics

(GO) theory. GO assumes that EM waves travel along ray paths

(Ruck, 1970:39-40). Unfortunately, GO fails to account for

diffraction. Diffraction occurs when the incident wave hits

tips, corners, edges, tangent points, or any discontinuity

(Ruck, 1970:44). The following example will illustrate the
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concept of diffraction.

Incident Reflection Boundarxy
Wnve

Targethadow floundrJ

rig 2.3. Diffraction Example.

Consider the case of a semi-infinite plane which is perfectly

conducting. A radar transmitter emits EM waves which hit the

plane. The transmitter is far away from the half plane so

that the EM waves reaching the plane can be considered plane

waves. Region I is where all reflected rays exist. Region

II is composed of all rays which don't Leach the plane. The

last region is denoted as the shadow region.

GO would only predict a return if the receiver was

located in Regions I or II. In all regions, GTD predicts a

more realistic return than GO (Stutzman, 1981:45 ). Thus,

GTD is more accurate in computing the RCS of a target than

PO, which predicts no return in the shadow region.

To calculate the RCS of a target caused by a point of

diffraction, the diffracted field (!d) must be calculated in

the desired direction leaving the diffraction point. The

diffracted field is proportional to the value of the incident

field (Ei) multiplied by a diffraction coefficient at the

point of diffraction (Stutzman, 1981:459). The diffraction
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coefficients are a local phenomena which depend on the local

point of diffraction (Keller, 1962:117). Diffraction

coefficients have been obtained for canonical problems such

as wedges, half planes, and infinite strips.

_ Fig 2.4. Edge diffraction from an infinite strip of width 2a
(Ross, 1966:331)

Ross used infinite strips to derive the GTD Monostatic
RCS from a rectangular plate (Ross, 1966:331). He obtained

the backscatter fields from an infinite strip in the X-Y

plane of width 2a (in X) and infinite height (in Y). The

following formulas are the expressions Ross computed for the

backscatter field of the infinite strip. The expressions

derived by Ross are given in the next pages.
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For vertical polarization:

/AT 0+O1 V A exp (fjKr + 7r~I
z (a 7tr r)"

x 1[+~e exp(-J2ko Sine)

exp(jiZKO. sine))

4 A exPUK~r+ZdJ.
* ~Cose8 (2.6)

+ A e x P([Ek (r+'14) -~

yT±Ini exp(j~ka. sine)

+ (I -si e XP(jza sine)3
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and, for horizontal polarization the expression is

A .exL[r+~ (r.*v

x ex-(Jj[xK Sin S _]+;+ ;r-J

+1 i. [I+ Fn e

x exI(JfKa. Sin )

Cos

2-

*r:ri)z(za (2.7)

I- Sihea

+ 2 Ka.)

where a is the azimuth angle measured from broadside to edge

(Ross, 1966:331). The RCS per unit length of the strip is
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obtained by

O".im Zirr (2.8)

r -) ooIAII
where v is the backscatter field from the strip. To obtain

the RCS from a rectangular flat plate, the following

relationship is used:

cr(a+rea) =-b dlen.9 'k (2.9)

where 2b is the length of the plate (in Y) (Ross, 1966:331).

Simplification of (2.6) and (2.7) produces the following

formulas:

(jr - L.

( #)V (2) [(o2 e + in-C,, Sb .)

k (-Sine) sine])J (2.10)

(J-Sine)WxPI2K.Sie
(1+ Sih e)1

2-1 I
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T84 [coTO sC). sineK~sn

Sil(IKOYL Cs 0 (21p A I K+a)A
(2.11)

X~~ex.PN21+ H8 +epjkSin l
I-ne si e- fI Sin e

j O2 : (lKa)

which gives us the GTD RCS of a rectangular flat plate of an

area of 2a by 2b (Ross, 1966:332). To obtain the RCS of a

square flat plate assume that amb. Note that if * is equal to

906 (grazing incidence) the expression for the RCS becomes

infinite. The expression is still very good when near

grazing incidence is avoided. Note that the singularity

occurs in the second and third order terms, i.e., the first

and second term in the second bracket, respectively.

Physical Theory of Diffraction (PTD)

PTD was developed in its original form by Ufimstev (Knott

Wand others, 1985:140). He worked on a way of improving the

2-11



Physical Optics approximation as opposed to Keller who worked

on improving the Geometrical Optics approximation.

The PTD solution was applied in the investigation thru

the use of the frill equivalent current solution (Marhefka,

1981:Ch 2, 11). The diffraction coefficients used in this

method are obtained by subtracting Keller's diffraction

coefficient and the physical optics diffraction coefficient

in the following (Marhefka, 1981:Ch 2, 3,11):

G -, (2.12)
PO

where

* G8,~n ) (2.13)

and

= [ sE(- c[e-ei)/2 ± sec(e+e9/] (2.14)

The PO diffraction coefficient is defined only for a wedge

angle of zero. This method is used in the same fashion as

GTD (see Geometrical Theory of Diffraction). However, the PO

results must be calculated explicitly and added to this

solution (Marhefka, 1981:Ch 2, 11).

Uniform Theory of Diffraction (UTD)

UTD was first developed by Kouyoumjian and Pathak to
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solve some problems presented by the GTD diffraction

0 coefficient on the shadow and illumination boundaries. UTD

provides a continuous solution on the transition boundaries

(Kouyoumjian, 1974:1) unlike GTD, which predicts an infinite

RCS on those boundaries. The form of UTD used in the

investigation is based on the Equivalent Current Method.

This method is an extension to the original form of UTD.

The Equivalent Current method was first used by Millar

(Knott and others, 1985:136). Eventually, it was introduced

into a GTD solution by Ryan and Rudduck (Peters, 1985:2). The

Equivalent Current method is essential when a finite edge or

corner is part of the target (Peters, 1985:1) as in the case

of a flat plate. These currents can be found by finding a

line source that produces the same fields at the observation

point as is diffracted to that point by an infinite straight

edge (Peters, 1985:3) (see Fig 2.5).

Og

IOUIVALtWT

0

Fig 2.5. Illustration of Equivalent Current Concept
(Peters, 1985:17)
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For the geometry in Fig 2.5, assume that the incident

*electric field is given by

=E er O r,0 (2.15)

where

A ) A E (2.16)

and 6 is the unit vector normal to the surface. From this,

the following expression for the equivalent electric current

is obtained:

WO =  0o a"e )Ci-_ Xp(jKA; ,,,
zGPr (2.17)
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where Ge is the soft form (the incident ray polarization is

parallel to the edge) of Keller's Diffraction coefficient

(see Eq (2.13)). In the monostatic case, po is equal to Od

(Marhefka, 1981:Ch 2, 3). I is an equivalent current
--e

because it is a function of the observation direction

(Marhefka, 1981:Ch 2, 3). The edge diffracted field will

then be given by

~~e( A 9  W OS) XJj4J Zdz
2.112S(2.18)

which in turn is

s in.( .- ifxois e KI.(PXP (2.19)

Note this result is only the diffraction caused by one of the

edges of the target. Thus, .this is only a single diffraction

result for one edge. There is another point in the plate
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that diffracts the wave.

Another important diffraction contribution to the total

RCS of the plate is the corners. Marhefka also includes a

corner solution to its RCSBSC computer code which enables the

code to model multiple plate structures (Marhefka, 1981:Ch

2,8). For a perfectly conducting plate, the Equivalent

Current corner solution is obtained by adding the edge

diffracted fields that come together at that corner

(Marhefka, 1981:Ch 2, 8). In the far-field, the corner

diffracted field is given by (Marhefka, 1981:Ch 2, 8-9)

[E v D ; (2.2)

*~~ L_ 0 ~ #~ ~~

where

=- (QE) sin sin~j t't e (2.21)

C-(Q) iCos VC04s4/

and

-0 (2.22)
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and

(Y) F (2.23)

and

2 C ( (2.24)

and

DO ~ ~ r ((Y)/ Sirr Y(225

where
o0

(2.2%FRx) = 2il x)/I CeJX, ej (2.26)

Fx) "is a heuristic function which insures that the

diffractior coefficient will not change sign abruptly when it

passes thru the shadow boundaries of the edge " (Peters,

1985:14). This solution (Eq (2.20)) is self-contained by a

flat plate (Marhefka, 1981:Ch 2, 9). In other words, at the

limit of (Eq(2.20)), the specular scattered field will be

obtained for the appropriate region.

Diffractions from edge to corner, corner to edge, and
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corner to corner are known as double diffraction terms (see

Fig 2.6). The UTD solution used for this investigation has a

double diffraction solution built into it.

iiP

a. Ege to corner Diffraction

-1. corner to corner Gl fraction

Fig 2.6. Examples of Double Diffraction

The double diffraction solution only calculates the component

perpendicular to the edge. In other words, only the double

diffraction solution for the horizontally polarized case is

computed. For vertical polarization, the double diffraction

solution is practically the same (because of surface boundary

conditions) as the single diffraction solution for the same

case (Marhefka, 1981:Ch 2, 15). The doubly diffracted fields

are given by (Marhefka, 1981:Ch 2, 15)
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a. corner to edge:

E" 0 ss sin ,o,;)-

Yh~ssn~$)O(s4 YeiXS -jKS" -jkg' (2. 27)
x2.tS eq0)) 1, e

b. corner to corner:

XY2. (2.28)

Sie gJ $'ejKS

c. edge to corner;

* :( .,)E" Dn (/ sm'f, .o o, €i

S(2/ieJK IeJJKS/ "~KS

where the edge and corner diffraction coefficients are given

respectively by

* ) +D L,#P,+ 0)+0 (2.30)

2-19



V) K
U IQcs4  K (2.31)

where

PO M(LAc)) -[I(V 
(2.32)

To get the total RCS, all the contributions of the

diffracted field are added together. Using equation (2.1),

the RCS of the target is obtained.

Momen't Method (MM)

The Method of Moments or Moment Method is a numerical

technique used to solve the following integral equation:

in terms of the current J(r') (Stutzman, 1981:306). This

equation is known as an electric field integral equation

(EFIE). The current is used to obtain the fields. Then the

RCS is obtained from the fields. In Fig 2.7, S is the

surface of the plate and n is the unit vector perpendicular
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to the surface (Newman, 1985:4). The unit vector in this

particular example is -Y. Let (tj) be a source that produces

the incident fields (E).

S

1 I = I

Fig 2.7. Scattering from a f!at plate

The fields scattered by the plates are given by

0

E _ EE (2.34)

where 2 is the field in the presence of the target (Newman,

1985:4-5).

To solve for the unknown current, MM assumes that J(r')

can be approximated as a linear combination of known

functions, which are known as expansion functions. Usually,

the unknown current is given by
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N

__r/ In E.(' (2.35)n~i

where r' is a general position vector to any point on a

scattering source, In is the nth expansion coefficient, and

i is the expansion function (Newman, 1985:8). The simplest-n•

type of expansion function is the pulse function. The

target's scattering surface is broken into N pieces. The

expansion function can then be generally described by

*I 
for the nth piece (2.36)

O otherwise

The pulse expansion function is not very accurate if the N

pulses are too big as can be seen in Fig 2.8.

11 • zrr0 or

FPig 2.8. Expansion of a triangular distribution current
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The solution to this problem is to choose a larger N, or

choose another expansion function. The ESP computer code was

used to calculate the RCS of the targets using MM. It offers

three expansion modes. These are the wire-grid, surface

patch, and attachment dipole modes (Newman, 1985:9).

Either the surface patch mode or the wire mode can be

used to model a rectangular flat plate with ESP. The

wire-grid model is easy to implement and produces good

results at the far-field (Wilton, 1981:70). Unfortunately,

its results are not good in the near-field. Also, Wilton

states that the wire-grid models accuracy has been put in

doubt (Wilton, 1981:70). The surface patch code is more

accurate than the wire-grid model at the near field. Also,

it is easier to model a flat plate with the surface patch

model than with the wire-grid model. For these reasons, the

surface patch model was used to model the square flat

plates.

The surface patch mode is implemented by assuming that

the currents on the rectangular flat plate are expanded in

terms of rectangular piecewise sinusoidal (PWS) surface patch

dipole modes (Newman, 1985:11) (see Fig 2.9). The current

density for Fig 2.9 is (Newman, 1985:7)

A sin K(z-z,) A a P i7 n (z,-Z)
TS 2W in Kz2-Z 1  + 2w Sin K(Z Z

A(2.37)
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here P1 and P2 are pulse functions given by

(I (2.38)

0 elsewhere

0 elsewhere

-Z2

!-- ZI

'W 
70 ? Y

Fig 2.9. A PWS rectangular surface patch dipole mode.

It is time to solve for I or J(r'). This is accomplished

by using testing or weighting functions (Wilton, 1981:80).

Assume that a test source with (Jm) is placed on the target

(Newman, 1985:6). This test source will produce the electric

field, (Em) o Eecause of boundary conditions, the fields

inside the target must be zero. Then the following is true:
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if(IS.f )S55 W WMd (2.40)

£ V

where V is the volume of the source (Newman, 1985:6). Using

Eq (2.35) and (2.40), the following is obtained (Newman,

1985:8):

N

Vm= ; rn= j ,23 ... N (2.41)

n;t

where

Z lnm E55 e r (2.42)

and

_ (2.43)

V
are the mutual impedance between the mth and nth mode and the

modal excitation voltage for the mth mode, respectively.

Once the scattered current is obtained, the scattered field

*is obtained by

2-25



(2.44)

and

E= IT x o=Surce electri;ca.1 (2.45)

(Knott and others, 1985:68; Newman, 1985:4). The scattered

field is obtained by using Eq (2.34). Finally, the RCS is

obtained by Eq (2.1).
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III. Measurement Procedure

The Avionics Laboratory Far-Field Radar Cross Section

(RCS) Measurement Chamber was used to perform the

experimental measurements. In this chapter, the measurement

procedure will be explained using documents provided by AFWAL

for their reports (Simpson, 1985).

The chamber is an indoor "far-field" RCS measurement

facility. The far-field criteria is given by

R > 1 (3.1)

where R is the distance between the target and the radar, Dl

is the maximum dimension of the transmit antenna, D2  is the

maximum transverse width of the target measured, and is the

wavelength of operation. Thus, accurate measurements are

limited to targets whose sizes satisfy Eq (3.1). A block

diagram of the system is provided in Fig 3.1. Fig 3.1 shows

that, the measurement system consists of a source, transmit

and receive antennas, and a computer to control the

operation. The system performs the RCS measurements and then

records it as azimuth angle (e) versus the target's RCS.

3-1



LOW 4
(SEE FIGuU 3.2) PC

aSourc#

Fig 3.1. AFWAL far-field RCS measurement facility
(Simpson, 1985:17)

TRAJWiSREC IV
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The measurements are accomplished by using a continuous

wave (CW) radar equipped with a nulling loop. The concept of

"CW-nulling" is illustrated in Fig 3.2. The source is a

Backward Wave Oscillator (BWO) which produces a stable

signal. This low power signal is generated at a frequency

within the microwave band (2-18 GHz). The frequency used for

the investigation was 10 GHz (3 cm wavelength). Most of it

is used by the transmit antenna which transmits it to the

chamber. The transmit power is split into two parts. One

portion is sent to the "reference channel" of a Scientific

Atlanta 1750 series phase/amplitude microwave receiver (see

point C in Fig 3.2). This reference signal is used to

provide a phase reference when the test channel phase is

recorded. Once this is done, the test channel can perform

accurate amplitude and phase measurements. This portion of

the transmit signal also provides the receiver with a signal.

The second portion of the transmit signal is sent to the

microwave "nulling loop" (point A in Fig 3.2). The nulling

is accomplished by adjusting the nulling loop attenuators and

phase shifter. As a result, the receive signal is cancelled

at point "B" (see Fig 3.2) by the output of the nulling loop,

which is equal in amplitude but opposite in phase to the

receive signal. Thus, the test channel signal level is

reduced to the noise level of the receiver.

The target is then mounted on a low frontal RCS support

pole. The targets used were flat plates. The plates were

measured from edge to broadside (-45" to 450 ) az can be seen
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in Fig 3.3.

Target

Incidence
45

Fig 3.3. Angle of Incidence on Target

The measurements were taken for -450 < * < 450 (edge to

broadside) because the computer software used only can

function for angles ranging from negative to positive (or -A

< < +A ). This is equivalent to taking the incidence angle

as going from 00 to 90° (edge to broadside).

The size of the plates ranged from half a wavelength (1.5

cm) to 6.5 wavelengths (19.5 cm) in increments of half a

wavelength. Also, a plate of 3/4 of a wavelength (2.25 cm)

was considered. The uncalibrated RCS of the targets are

measured as the targets rotate on the mount. These results

are then stored in the computer.

The receiver amplitude is calibrated next. This is

accomplished by rotating the target to the angle which

produces the greatest backscatter RCS. In the case of a

square flat plate, this would be the broadside. Once the

maximum RCS is obtained, a precision calibration attenuator

(in the test channel of the receiver) is adjusted in 5 dB

steps from 0 to -60 dB. The computer stores these results

9and calibrates the raw RCS pattern of the target.
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The target is then removed and a calibration sphere is

positioned on the mount. Recording the test level with the

sphere on the support column establishes an absolute RCS

level. If the target's broadside RCS is greater than the

sphere's RCS, the target is left in the support. The

computer then assigns an absolute RCS scale to the original

target pattern. This is a source of calibration error if the

plate is not properly located on the mount. The plate's

broadside must be perpendicular to the incident wave to avoid

this source of error. The final result is given by the

computer in decibels per square meter (dBsm).

Vertical polarization (V.P.) measurements are not as

accurate as horizontal polarization measurements (H.P.).

This is due to the low RCS mount which provides a higher RCS

contribution at V.P. than H.P. This RCS contribution is very

low but it is more noticeable at V.P. than H.P.
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IV. Comparison of Results

In this chapter, the five computational methods used will

be compared against each other and against the measurements.

The computational methods were Physical Optics (P0), the

Physical Theory of Diffraction (PTD), the Geometrical Theory

of Diffraction (GTD), the Uniform Theory of Diffraction

(UTO), and the Moment Method (MM).

Vertical Polarization

Half a wavelength. This was the smallest size measured

in the range. The RCS pattern of this plate has a null at

approximately 450 (see Fig 4.1).

-21j - - - - -

--- - - - - - - - -

-5a- -

-- - -

-3 - 3- - --

-~ZMT -(K-aC)---

Fi 4.1 -C aesrmn of 0. -aeent (15c) ltI -- - - - - - a -
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Fig 4.2. Calculated RCS for 0.5 wavelength (1.5 cm) plate
(V.P.)

None of the computational methods predict this null (see Fig

4.2). This null may be a result of the small size of the

plate. The plate is approximately equivalent to two dipoles

which are half a wavelength apart. It is possible that both

dipoles have the same magnitude but opposite phases, such

that they cancel each other out at an azimuth angle of 45*.

it is also possible that the range can not accurately

describe the RCS pattern for this plate at this polarization

because of its small size (see p. 5 in Chapter 3). Other

measurements were performed on the same plate at various

times providing different results. The most stable

measurement was the one shown in Fig 4.1.
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Table 4.1

Comparison of RCS of Half Wavelength Plate (V.P)

Peak Grazing CPU
Incidence Time

(dBsm) (dBsm) (sec)

PO -31.5 -190.0 1.8

PTD -31.5 -41.3 6.6

GTD -31.0 159.7 100.1

UTD -31.9 -41.3 135.0

MM -28.0 -41.2 51.6

Measurement -28.0 -36.0 N/A

From Fig 4.2 it can be seen that PTD and UTD have

approximately the same RCS pattern. This is what Marhefka

* predicted for this polarization (Marhefka, 1981:Ch 2,11,15).

Also by comparing PTD and UTD to Fig 4.1, it is evident that

MM is the only computational method to accurately predict the

specular peak of the plate's RCS (see Table 4.1). MM also

accurately predicts the RCS of the plate near and at

broadside (650 < 0 5 90"). The value measured for this plate

as grazing incidence differs by 5 dBsm from MM. This may be

due to the mounting plataform used in the measurements.

The RCS predicted by GTD increases as the azimuth angle

approaches grazing incidence (W° ). This should be expected

because the reflection boundary for this particular situation

occurs at grazing incidence (see Fig 4.3).
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Target

ReflectionI
DoundAZg

Fig 4.3. Reflection Boundary on Flat Plate (Monostatlc RCS)

The Moment method is the most accurate computational

method to calculate the RCS of a plate that is small with

respect to wavelength.

Table 4.1 shows the accuracy of the methods at specular

(broadside) and grazing (edge) incidence. Also, the CPU time

is included for comparison purposes. Again, MM is the most

accurate prediction method for the half wavelength plate at

this polarization. The MM CPU time is small when compared to

the UTD time. Thus, MM is the preferred computational method

for a target of this size using vertical polarization.

The rest of the graphs and tables will be presented in

Appendix A and B respectively.

Three Quarters of a Wavelength. In this case the

measured RCS pattern and the RCS pattern predicted by the

Moment Method are in agreement for a longer range of azimuth

angle (150 < e 90*) (see Fig A.3 in App. A). MM differs by

approximately 1 dBsm when compared to the actual measurements

(see Table B.2 in App. B). This difference can be attributed

to measurement calibration error. This calibration error

accounts for the difference between the levels.

The Moment Method is again the most accurate prediction
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method. Also, the CPU time required for computing the MM has

increased (see Table B.2 in App. B). Thus, the CPU time will

increase as the size of the plate increases.

Again, UTD and PTD predict the same RCS pattern (see Fig

A.4 in App. A). GTD increases as it approaches grazing

incidence, and P0 continues to predict a small return from

the edge.

The PO, PTD, GTD, and UTD predictions for the specular

region are closer to those of MM. All the computational

methods are in close agreement with the measurements for

700 < e- 900 (see Fig A.3 and A.4 in App. A).

One Wavelength. For this case, MM provides the most

accurate representation of the RCS. It is very accurate in

the range of 358< S 900 (see Fig A.5 and A.6 in App. A).

PO, PTD, GTD, and UTD predict a higher specular peak than

MM (see Fig A.6). In fact, the four methods agree in the

range of 68 < 0 < 90° . Thus, the plate's size is too small

to be modeled by those four computational methods.

The CPU time required to model this plate with MM is

greater than the time required for the other plates (see

Table B.3 in App. B). The Moment Method is the most accurate

computational method for this plate size. Its CPU time is

smaller than UTD's CPU time. Thus, MM is still the preferred

method for a plate cf this size.

One and a Half Wavelengths. The RCS pattern for this

plate has 3 nulls and peaks (see Fig A.7 in App. A). Thus,
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as the size of the plate increases (in wavelengths), the

number of nulls and peaks also increases.

MM very accurately predicts the shape of the RCS pattern

of this plate (see Fig A.8 in App. A). The levels of the

first 2 peaks computed by MM are approximately equal to the

measured peaks (see Fig A.7 and A.8).

As can be seen from Table B.4 in App. B, MM is the

longest running computational method used for this plate.

Also, PO, PTD, GTD and UTD are more accurate in the specular

region for a plate of this size. For these four

computational methods, the CPU time remains the same

regardless of the size of the plate.

All the methods converge within the range of 740 < $ 5

. For larger sized plates (in wavelengths), the five

computational methods will all converge near the specular

region.

Two Wavelengths. MM predicts the shape of the RCS of

this target very accurately (see Fig A.9 and A.10 in App. A).

The five computational methods converge near the specular

region as expected (760 < 90O). A summary of the most

important findings is given in Table B.5 in App. B.

Two and a Half Wavelengths. As mentioned before the

peaks and nulls have increased because of the increase in the

size of the plate (see Fig A.ll in App. A). Again, MM is the

most accurate prediction method. Also, PTD, GTD, and UTD are

more accurate than they were for the smaller plates (for 370
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I < 996) (see Fig A.11 and A.12 in App. A). Thus, as the

size of the plate increases, the accuracy of PTD, GTD, and

UTD increases. All five computational methods converge

between 780 and 90 .

Again, Table B.6 in App. B summarizes some of the most

important aspects of the comparisons.

Three Wavelengths. As expected, MM provides the most

accurate RCS pattern for this plate (see Fig A.13 and A.14 in

App. A). All methods converge accurately near the specular

region (820 < # S 90° ). PO is good for predicting the

sidelobe peaks from 650 to 90% As expected, PTD, GTD, UTD,

and MM converge for an azimuth angle from 360 to 90*.

As mentioned before, the number of peaks and nulls

increase as the plate size increases. Note, that the CPU

time to implement the Moment Method has increased again.

Also note that MM is not very accurate near the edge (see

Table B.7 in App. 8).

Three and a Half Wavelengths. MM is again the most

accurate RCS prediction method (see Fig A.15 and A.16 in App.

A). All the computational methods converge for a greater

range of azimuth angle (700 S 90) (see Fig A.16). Note

the increasing accuracy of PTD, GTD, and UTD. Also, PO is

good near the specular region.

Note again that the computational methods require the

same CPU time, and MM still requires the most time (see Table

B.8 in App. B).
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Four Wavelengths. MM is the most accurate computational

method for this plate size. All methods converge for an

azimuth angle ranging from 760 to 9 ° (see Fig A.17 and A.18

in App. A).

The difference between the measured and the computed

specular levels (see Table B.9 in App. B) is caused by

measurement calibration error.

The rest of the cases follow the same pattern for

vertical polarization. The reader is referred to Appendix A

t!ra the rest of the cases are plotted. Appendix B contains

the rest of the tables.

Horizontal Polarization

Half a Wavelength. Because of the boundary conditions,

the edge RCS is lower than it was for the vertical

polarization case (see Fig A.1 and A.19 in App. A). The

incident E field is now perpendicular to the edge of the

plate. Thus, when the azimuth angle is zero the radar "sees"

the minimum RCS return possible from that plate. This is the

same for any size plate at this polarization. Note that the

measurements near on 0* are unstable. This is due to the

chamber's limited ability for measuring an RCS of less than

-60 dBsm.

For a plate of this size, the only accurate prediction

method is the Moment Method (see Fig A.19 and A.20 of

Appendix A. The CPU time for MM is very short in this case

(see Table B.l in App. B). All the computational methods
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take the same amount of CPU Ame for a given plate size

regardless of the polarization. Note that P0, PTD, GTD, and

UTD are not good for predicting the RCS of a target of this

size regardless of the polarization.

For horizontal polarization, PTD and UTD do not predict

the same RCS for the same target. This is because UTD's

second order diffraction solution is used when the E field is

perpendicular to the edge of diffraction. For vertical

polarization the boundary conditions are such that double

diffraction of the E fields is small. Thus, the contribution

of double diffraction to the UTD solution is negligible

(Marhefka, 1981:Ch2, 15). The PTD solution, which has only

first order diffraction built into it, is not as accurate.

The tables in Appendix B provide the values of the

specular peak and CPU time for both vertical and horizontal

polarization.

Three Quarters of a Wavelength. Again, MM is the most

accurate prediction method (see Fig A.17 and A.18 in App. A).

However, PO, PTD, GTD, and UTD seem to converge better near

the specular region (817 < * 90O).

One Wavelength. MM is the only computational method to

accurately predict the specular peak level (see Table B.12 in

App. B). GTD is more accurate than PO, PTD, and UTD. This

can be attributed to the fact that the GTD solution has a

third order diffraction term added to it (see Fig A.19 and

A.20 in App. A).

4-9



MM is not "exact" because to use it, the user must take

into account the limitations of the computer system itself.

The VAX 11/780 is a powerful computer system but it is much

slower than a Cray computer. In order to speed up the

computing process the user has to reduce the number of modes

as the size of the plate increases (see pp. 20-26 in Ch. 2).

Also, if the number of modes is too large, the computer

cannot handle all the modes. This explains why MM is not

"exact" when compared to the measurements.

One and a Half Wavelengths. As the size of the plate

becomes larger than the operating wavelength, PO, PTD, GTD,

and UTD start to converge within the specular and near

specular regions (710 < # < 90 °) (see Fig A.21 and A.22 in

App. A). MM is still the most accurate RCS prediction

method. As in the vertical polarization case, the number of

peaks and nulls increase as the plate size.

Two Wavelengths. MM is the most accurate prediction

method (see Fig A.23 and A.24 in App. A). GTD is more

accurate than UTD because GTD has a third order diffraction

term included in the solution (see Fig 4.4). This third

order term accounts for triple (edge to edge to edge)

bounces. The UTD solution includes only the first and second

order diffraction terms in the solution. Note that GTD

predicts a large RCS as it approaches the edge whereas UTD

does not. If a third order diffraction term were added to

the UTD solution, UTD would more accurately compute the RCS
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of a large target at horizontal polarization.

-- r or~ Toe GTO 9X (PHI) .4

-I0.00 @a 2 o
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0.00 £aaa a0.00 MW A&= W 1. M. M.W bo. M" e.os

AZ IMUTH

Fig 4.4. GTD RCS with first, second, and third order
diffraction terms.

Two and a Half Wavelengths. PTD, GTD, UTD, and MM all

converge for an azimuth angle of 550 . The convergence is

excellent for all five methods from 780 to 90".

The RCS computations have the same type of behavior for

the rest of the plates. The reader is referred to both

appendices A and B for the results obtained for the rest of

the targets.

General Results

Pattern Complexity. One of the results found in the

investigation is that the number of peaks and nulls increase

with plate size (see App. A). This agrees with Ross' results
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(Ross, 1966:332). As a result, the complexity of the RCS

pattern increases as the plate size increases.

Polarization Del2endence. Another important result is

that the RCS measurements of the plates exhibit polarization

dependence for *< 60. For horizontal polarization the edge

RCS has a much smaller value than the edge RCS of the same

plate for vertical polarization. GTD, UTD, and 4M are the

only computational methods that were polarization dependent

in the investigation. The polarization dependence of these

computational methods also occurs when is less than

600.

PTD has only a first order diffraction term built into

its solution. Thus, the RCS appears to be the same for the

same plate at either polarization (see Fig 4.5).

L - Y-,w Y1T t *I-I I* 7r-r-,-w T w I | i w T F aY

--- - I aX 9 04-"

0
-4& 0

0Fig 4.5a. PTD RCS (Vertical Polarization)
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Fig 4.5b. PTD RCS (Horizontal Polarization)

if a second order diffraction term is added to the PTD

~solution, the PTD RCS pattern would be polarization

dependent. Thus, this implementation oil PTD is not a viable

computational method for more complex targets. Higher order

diffraction terms are needed to make this solution more

accurate.

PO produces the same result for either polarization.

Thus, PO is independent of polarization for any pLate size

(Ross, 1966:332).

Specular Reio. MM is the most accurate prediction

method in the specular region (broadside) (see Table 4.2).

At 2.5 wavelengths (7.5 cm), the plates are much larger than

the wavelength. This situation leads to High-Frequency

~scattering (Knott and others, 1985:57).
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Table 4. 2

Specular RCS (broadisde)

size PO PTD GTD UTD MM

(wave.) (dBsm) (dBsin) (dBsm) (d~sm) (dBsm)

0.5 -31.5 -31.5 -31.0 -31.9 -28.0

0.75 -24.6 -24.6 -24.2 -24.2 -23.9

1.0 -19.5 -19.5 -19.3 -19.3 -20.3

1.5 -12.4 -12.4 -11.9 -12.4 -12.5

2.0 -7.4 -7.4 -7.4 -7.4 -7.4

2.5 -3.5 -3.5 -3.6 -3.9 -3.7

3.0 -0.4 -0.4 -0.4 -0.4 -0.4

3.5 2.3 2.3 2.3 2.3 2.3

4.0 4.6 4.6 4.6 4.6 4.6

4.5 6.7 6.7 6.7 6.7 6.7

5.0 8.5 8.5 8.5 8.5 8.5

5.5 10.2 10.2 10.2 10.2 10.2

6.0 11.7 11.7 11.7 11.7 11.7

6.5 13.1 13.1 13.1 13.1 13.1
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Table 4.3

CPU Time

Size PO PTD GTD UTD Mm

(wave.) (sec) (sec) (sec) (sec) (see)

9.5 1.8 6.6 100.1 135.0 51.6

0.75 1.8 6.6 100.1 135.0 76.9

1.0 1.8 6.6 100.1 135.0 116.4

1.5 1.8 6.6 180.1 135.0 163.4

2.0 1.8 6.6 100.1 135.0 199.4

2.5 1.8 6.6 108.1 135.0 263.7

3.0 1.8 6.6 109.1 135.0 386.7

3.5 1.8 6.6 100.1 135.0 606.0

4.0 1.8 6.6 100.1 135.9 829.3

4.5 1.8 6.6 10.1 135.9 1646.9

5.0 1.8 6.6 109.1 135.9 2219.9

5.5 1.8 6.6 100.1 135.0 3002.4

6.0 1.8 6.6 100.1 135.0 4018.6

6.5 1.8 6.6 100.1 135.9 4032.6

4
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For this type of scattering, the detailed geometry of the

target is important to the scattering process. GTD, UTD, PO,

and PTD are all high-frequency computational methods. Thus,

their accuracy is considerably better in the high-frequency

region (Knott, 1985:57). All the computational methods are

highly accurate in the specular region from 2.5 wavelengths

to 6.5 wavelengths (19.5 cm). Note that MM differs by 1 to 2

dBsm from the measurements because of measurement calibration

error (see p. 5 in Ch. 3).

CPU Time. The CPU time was estimated thru the use of a

subroutine used by RCSBSC and ESP for this purpose (Newman,

1985:60). The GTD time was an estimate taken over a period

of time by the author. Also, the GTD program works only for

rectangular flat plates. Therefore, the CPU time is not as

accurate as the others. As previously mentioned, MM

computation time increases as the size of the plate increases

(see Table 4.3). The other computational methods take the

same CPU time regardless of the plate size. UTD's CPU time

for a 2.5 wavelength plate is.135 sec. MM's CPU time for a

plate of the same size is 263.70. MM is still much more

accurate than the other computational methods, but one must

take into account that 4018.5 sec (1 hour and 7 minutes) of

CPU time is required to calculate the RCS of a 6 wavelengths

(18 cm) square flat plate.

UTD takes more CPU time than GTD because its RCS solution

is more complex than GTD's solution.
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Overall Accuracy. MM is the most accurate RCS

computational method. It accurately predicts the RCS pattern

for almost all of the plates. The levels of the measurements

may differ in some cases (measurement calibration error) but

the shape of the pattern predicted by MM is correct. MM is

more accurate at vertical polarization than at horizontal

polarization. This is because higher order terms that occur

at horizontal polarization are more difficult to model than

the first order terms that occur at vertical polarization.

Also, accuracy is achieved at the expense of CPU time. If a

2.0 wavelength square flat plate is modeled using 0.2

wavelength increments, the CPU time would be 1181.3 sec. If

a 0.4 wavelength increment is used, the CPU time required by

MM is 114.4 sec. The former case is more accurate than the

latter case. Thus, the accuracy of an MM model is directly

related to the size of the increments or samples.

On the other hand, the accuracy cf PTD, GTD, and UTD

generally depends on the higher order terms added to the

solution. GTD is very accurate because of the addition of

second and third order terms to the RCS solution. Ao

mentioned before, the higher order terms only affect the

horizontal polarization case. Unfortunately, GTD fails at

grazing incidence where the predicted RCS approaches

infinity. UTD and GTD have a better convergence (predict the

same result) for vertical polarization than horizontal

polarization (see Table 4.4), because the higher order

diffraction terms are negligible on vertical polarization.
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Table 4.4d

UTD Versus GTD Convergence

Size V.P. H.P.

(wave.) (degrees) (degrees)

10.5 60 - 90 0

0.75 66 - 90 73 - 90

1.0 35 - 90 72 - 90

1.5 12 - 90 76 - 90

2.0 8 - 90 78 - 90

2.5 6 - 90 71 - 90

3.0 6 - 90 71 - 90

3.5 6 - 90 66 - 90

4.0 5 - 90 61 - 90

4.5 5 - 90 63 - 90

5.0 5 - 90 68 - 90

5.5 5 - 90 69 - 90

6.0 4 - 90 65 - 90

6.5 4 - 90 65 - 90
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UTD also is not very accurate at grazing incidence.

However, the RCS it predicts there does not approach

infinity. UTD's accuracy could be improved if higher order

diffraction terms were added.

- EQUIVALENT CURRENT SOL.
40 e o MEASURED

A X X ROSS RESULT (16]
a

30

20- X

A 10 313

0 _

-10

-20
Fig 4.6. RCS of a 4 x 4 inch Plate at 9.227 GHz

(Marhefka, 1981:Ch5, 1.2)

In Fig 4.6, the RCS of a 4 in square flat plate at 9.227 GHz

is compared against Ross' GTD calculations and against the

UTD with third order diffraction terms (Marhefka, 1981:Ch5,

11-12). UTD is much more accurate than GTD for this example.

Thus, UTD's accuracy can be enhanced with the addition of

higher order terms.
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PTD is more accurate at vertical polarization than

horizontal polarization. This is because the PTD solution

has only a first order diffraction term in it. Thus, the PTD

solution does not take into account the multiple bounces that

occur at the horizontal polarization.

PO is the least accurate of all the computational methods

investigated. However, PO is very good for predicting the

RCS at the near specular region (approximately 700 < # < 900)

in a relatively small amount of CPU time for plates that are

2.5 wavelengths or larger.
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V. Conclusions and Recommendations

Conclusions

The Moment Method is the most accurate RCS computational

technique of the five investigated. MM accounts for

polarization dependence, pattern complexity, and the specular

peak of a plate which is small with respect to wavelength

(smaller than 2 wavelengths). MM is also highly accurate for

larger plates (larger than 2 wavelengths), but its CPU time

increases as the size of the plate increases. Thus, MM is a

poor choice of RCS computation method for plates that are

larger than 2.0 wavelengths due to the CPU time required.

The Geometrical Theory of Diffraction does not predict an

accurate RCS for plates that are smaller than 2.5 wavelengths

on a side. GTD provides a more accurate solution for plates

whose size is 2.5 wavelength or larger. It is very accurate

for horizontal polarization because of its second and third

order diffraction terms. For a given type of target, GTD's

CPU time remains the same as the plate size increases.

Unfortunately, GTD fails to predict the RCS near and at the

edge of the plate (the reflection boundary of the target).

The Uniform Theory of Diffraction is accurate for plates

that are larger than 2.0 wavelengths, but it is less accurate

than GTD. However, UTD, unlike GTD, does not give infinite

results at the edge. If a third diffraction coefficient was

added to the solution, UTD would be more accurate than GTD.

UTD's CPU time is greater than GTD's CPU time. This is due
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to the complexity of the UTD mathematical expressions. Also,

the GTD solution was derived specifically only for

rectangular flat plates. However, the UTD solution used for

this investigation can model more complex shapes than flat

plates. Fortunately, UTD's CPU time remains the same as the

plate size increases.

The Physical Theory of Diffraction is not as accurate as

MM, GTD, and UTD. This is because the PTD solution only

takes into account the first order diffraction term. Thus,

PTD is not very accurate at horizontal polarization where the

higher order terms are more important. Therefore, PTD

predicts the same result for a given plate at either

polarization.

The Physical Optics approximation is the least accurate

of the five computational methods investigated. Also, PO is

independent of polarization. Thus, PO predicts the same RCS

for either polarization. PO is accurate near and at the

specular region. The CPU time required to implement this

method is the shortest of the five investigated.

Although MM is the most accurate computational method for

a perfectly conducting flat plate, it takes too much CPU time

to use. Since CPU time is expensive, MM is the most

expensive to use of the five methods. Also, as the size of

the target increases, MM requires more CPU time. Thus, for a

large (when compared to wavelength) perfectly conducting

target, MM results can be very expensive. In general, UTD is

a better choice for predicting the RCS of a perfectly
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conducting flat plate with a side dimension of at least 2.5

0wavelengths. UTD is quick and accurate for computing the RCS

of a target. Finally, PO is a good choice for calculating

the RCS of large targets near and in the specular region

because of its speed and accuracy.

Recommendations

There are more computational methods that could be

investigated. Among these are the original form of UTD

developed by Kouyoumjian and Pathak (Kouyoumjian and Pathak,

1974), the Uniform Asymptotic Theory (Knott and others,

1985:134), and the Spectral Theory of Diffraction

(Kouyoumjian, 1985:6). Hybrid techniques like MM-GTD and

UTD-PTD could also be investigated. In addition, the UTD and

PTD solutions could include higher order terms.

The 0.5 wavelength flat plate should be analyzed at a

different frequency to observe if the RCS pattern varies from

the measurements obtained in this investigation.

Other types of targets (besides square flat plates) could

be analyzed in future investigations using the same five

computational methods.
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VI. Appendix

AppendixA. RCS Grph
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Fig A.l. RCS measurement of 0.5 wavelength (1.5 cm) plate
(V.P.)
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Fig A.2. RCS for 0.5 wavelength (1.5 cm) ?late (V.P.)
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Fig A.4. Calculated RCS for 0.75 wavelength (2.25 cm) plate
(V.P.)
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Fig A-6. Calculated RCS for 1.0 wavelength (3.0 cm) plate

(V.P.)
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Fig A.14. Ca culated RCS for 3.8 wavelenqth (9.0 cm) plate
(V.P.)
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Fig A.15. RCS measurement of 3.5 wavelength (10.5 cm) plate

(V.P.)

-Sao

--------------------------------

.2L 00 PTO TT

Fig A.16. Calculated RCS for 3.5 wavelength (10.5 cm) plate

(V.P.)
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Fig A.20. Calculated RCS for 4.5 wavelength (13.5 cm) plate
* (V.P.)
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Fig A.21. RCS measurement of 5.0 wavelength (15.0 cm) plate
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Fig A.22. Calculated RCS for 5.0 wavelength (15.0 cm) plate
(V.P.)
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Fig A.23. RCS measurement of 5.5 wavelength (16.5 cm) plate
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Fig A.26. Calculated RCS for 6.0 wavelength (18.0 cm) plate
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Fig A.27. RCS measurement of 6.5 wavelength (19.5 cm) plate
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Fig A.31. RCS measurement of 0.75 wavelength (2.25 cm) plate
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Fig A.33. RCS measurement of 1.0 wavelength (3..0 cm) plate
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Fig A.37. RCS measurement of 2.0 wavelength (6.0 cm) plate
(H.P.)
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Fig A.42. Calcueaserementfof 3.0 wavelength (9.0 cm) plate
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Fig A.43. RCS measurement of 3.5 wavelength (10.5 cm) Plate

In. 00
z4.:Yj Of

w -as.K

0.00 10.0 W 10. 00 30.00 40. 00 50. DO SQ 00 70. 00 S0. 00 90. 00

AZ IMUTH
Fig A.44. Calculated RCS for 3.5 wavelength (10.5 cm) plate
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Fig A.46. Calcmeasurementfof 4.0 wavelength (12.0 cm) plate
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Fig A.49. RCS measurement of 5.0 wavelength (15.0 cm) plate
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Fig A.52. Calculated RCS for 5.5 wavelength (16.5 cm) plate
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Fig A.53. RCS measurement of 6.0 wavelength (18.0 cm) plate
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hppendix B. Comparison of RCS Computational Methods

Table B.1

Comparison of RCS of Half Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO -31.5 1.8

PTD -31.5 6.6

GTD -31.0 100.1

UTD -31.9 135.0

MM -28.0 51.6

Measurement -28.0 N/A

Table B.2

Comparison of RCS of 3/4 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO -24.6 1.8

PTD -24.6 6.6

GTD -24.2 100.1

UTD -24.2 135.0

MM -23.9 76.9

Measurement -24.0 N/A
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Table B. 3

Comparison of RCS of 1.0 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO -19.5 1.8

PTD -19.5 6.6

GTD -19.3 100.1

UTD -19.3 135.0

MM -20.3 116.9

Measurement -20.3 N/A

Table B.4

Comparison of RCS of 1.5 Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO -12.4 1.8

PTD -12.4 6.6

GTD -11.9 100.1

UTD -12.4 135.0

MM -12.5 163.4

Measurement -12.5 N/A
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Table B.5

Comparison of RCS of 2.0 Wavelength Plate

P %k CPU
Time

(dBsm) (sec)

PO -7.4 1.8

PTD -7.4 6.6

GTD -7.4 100.1

UTD -7.4 135.0

MM -7.4 199.4

Measurement -7.4 N/A

Table B.6

Comparison of RCS of 2.5 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO -3.5 1.8

PTD -3.5 6.6

GTD -3.6 100.1

UTD -3.5 135.0

MM -3.9 263.7

Measurement -3.7 N/A
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Table B.7

Comparison of RCS of 3.0 Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO -0.4 1.8

PTD -0.4 6.6

GTD -0.4 100.1

UTD -0.4 135.0

MM -0.4 386.7

Measurement -0.4 N/A

Table B.8

Comparison of RCS of 3.5 Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO 2.3 1.8

PTD 2.3 6.6

GTD 2.3 100.1

UTD 2.3 135.0

MM 2.3 606.0

Measurement 2.3 N/A
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Table B.9

Comparison of RCS of 4.0 Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO 4.6 1.8

PTD 4.6 6.6

GTD 4.6 100.1

UTD 4.6 135.0

MM 4.6 829.3

Measurement 4.5 N/A

Table B,10

Comparison of RCS of 4.5 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO 6.7 1.8

PTD 6.7 6.6

GTD 6.7 100.1

UTD 6.7 135.0

MM 6.7 1646.9

Measurement 6.7 N/A
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Table B.11

Comparison of RCS of 5.0 Wavelength Plate

Peak CPU
Time

WdSW) (sec)

PO 8.5 1.8

PTD 8.5 6.6

GTD 8.5 100.1

UTD 8.5 135.0

MM 8.5 2219.9

Measurement 7.5 /

Table B.12

Comparison of RCS of 5.5 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO 10.2 1.8

PTD 10..2 6.6

GTD 10.2 100.1

UTD 10.2 135.0

MM 10.2 3002.4

Measurement 9.2 N/A
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Table B.13

Comparison of RCS of 6.0 Wavelength Plate

Peak CPU
T ime

(dBsm) (sec)

PO 11.7 1.8

PTD 11.7 6.6

GTD 11.7 100.1

UTD 11.7 135.0

MM 11.7 4018.6

Measurement 9.8 N/A

Table B.14

Comparison of RCS of 6.5 Wavelength Plate

Peak CPU
Time

(dBsm) (sec)

PO 13.1 1.8

PTD 13.1 6.6

GTD 13.1 100.1

UTD 13.1 135.0

MM 13.1 4032.6

Measurement 12.8 N/A
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Appendix C. Computer Program to Calculate GTD RCS

This program was developed from Ross' equations for the

RCS of a rectangular flat plate (Ross, 1966:332). The

program computes the GTD RCS versus angle of incidence for a

square flat plate at 10 GHz. The size of the plate and the

degree increments are specified in Logical Unit 5. The

program is written in FORTRAN/77, and the output file is

written in Logical Unit 6. A data file for plotting is

provided in Logical Unit 1.

The Output is given in three columns: angle of incidence

in degrees, vertical polarization RCS in dBsm, and horizontal

polarization RCS in dBsm.

C THIS PROGRAM IS BASED ON ROSS FORMULAS FOR
C A RECTANGULAR FLAT PLATE
C BY 2D LT ULICE J. MACIAS, AFIT
C A-SIDE OF SQUARE FLAT PLATE
C F-FREQUENCY OF PLATE= 10 GHz

COMPLEX CMEAT,SD,DDTD,DDI,DD2,DD3,DD4
COMPLEX HMEAT,HSD,HDD,HTD,HDD1,HDD2,HDD3,HDD4
OPEN(UNITl1,FILE-'GTDPLOT.DAT',STATUS-'NEW',
FORM-'UNFORMATTED')
READ(5,*) A

C*** F- FREQUENCY OF OPERATION
F-10E9

W-3E8/F
PI-3.14159265
K-2*PI/W
SQ-SQRT(2*PI)
HRT-SQ*(K*A)**0.5
RT-SQ*(K*A)**1.5

C*** RI-INCREMENTS OF THETA(THE)
READ(5,*)RI
DO 100 THETA-0,90,RI
II-THETA
THE-THETA*PI/180-PI/2
IF(THE.EQ.0)THE=0.005
IF(THE.EQ.-PI*.5)THE-_(PI/2-.001)
RTA-K*A*SIN(THE)

C-I



HDD11UIC*A+PI/4
DD11-K*A-PI/4

HDD1-4*CEXP(CMPLX(0. ,HDD11) )/HRT
DDlaCEXP(CMPLX(O. ,DD11) )/RT
HDD2nHDDl/2
DD2-DDl/4
HDD3- (CEXP (CMPLX (0.,-RTA) )/ (1-SIN (THE)))

DD3-(l.SIN (THE) )/( (1-SIN (THE) )**2) *CEXP (CMPLX (0.,-RTA))
KDD4- (CEXP (CMPLX (0.,RTA) )/ (1+SIN (THE)))

DD4iil-SIt4(THE))I/((1+SIN(THE))**2)*CEXP(CMPLX(0.,RTA))
HDD.HDDI*(1/COS (THE) -HDD2* (HDD3+HDD4))
DD-DD1*(1/COS(THE)+DD2*(DD3+DD4))
HTD:(1-CEXP(CMPLX(0.,2*HDD11))/(2*PI*K*A))**(-1)
TD*(1- (CEXP (CMPLX(0. ,2*DD11) )/(8*Pl* (K'A) **3) )) ** (1)

RSDuCOS (RTA)
CSD--SIN (RTA) /SI N (THE)
HSD-CMPLX (RSD,-CSD)
SD-CMPLX (RSD,CSD)
HME ATuaH SD-HDD* HTD
CMEAT=SD-DD*TD

HREAT=CABS (HMEAT)
RMEAT=CABS (CMEAT)

SIHu1/PI* ( (HREAT*A) **2)
SIV=1/PI* ((RMEAT*A) **2)

SIHDB-10*ALOG1O (SIH)S SIVDB-10*ALOGI0 (Sly)
C*** WRITE AZIMUTH ANGLE, V.P. AND H.P. RCS

W~RITE (6,1) THETA, SIVDB, SI HDB
I ~FORMAT (1x,F7.2,F7.2,F7,2)

C** WRITE DATA FOR PLOTS
WRITE (1)II,THETA,SIVDB,SIHDB

100 CONTINUE
STOP
END
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